Systems Analysis

&

Systems Integration

For DOE Hydrogen R & D

Messages from the Academies Hydrogen Study,

Personal Experience

Robert L. Hirsch
Senior Energy Program Advisor, SAIC
July 28, 2004

Topics

- Academies findings / recommendations
 - + Systems analysis & integration both needed
- Hydrogen's competition in the marketplace
- Hydrogen options varied / breakthroughs needed
- Academies study wide-ranging but limited
- Differences in systems analysis & system integration

ACADEMIES HYDROGEN STUDY

- > COMPREHENSIVE
 - > CHALLENGING
 - > SUPPORTIVE OF DOE

ACADEMIES FINDINGS

- Pathway to H₂ not straightforward
- Exploratory research is essential
- Extensive R&D needed
- Issues: <u>Economic</u>, <u>social</u>, & <u>public acceptance</u>, especially <u>safety</u>
- Hydrogen program management is <u>far more</u> <u>challenging</u> than any previously undertaken by DOE in civilian energy
 - Systems Analysis essential guidance / perspective
 - System Integration needed for management

PROGRAM MANAGEMENT & SYSTEMS ANALYSIS Academies Recommendations

- ➤ The hydrogen economy may not be the most attractive long-range option for the U.S all long-term energy options need attention & systems analysis (Macro Systems Analysis)
- Making informed tradeoffs between hydrogen systems options, understanding R & D results, and mapping future program directions will be remarkably complex (Micro Systems Analysis)
- ➤ DOE should identify systems management approaches developed elsewhere in government adapt and apply them in the hydrogen program (Systems Integration)

U.S. Energy Options Other Than Hydrogen

- Other options not yet adequately defined by DOE.
- Desirables:
 - Economic
 - Domestic energy-based / No foreign dependence
 - Evolutionary vs revolutionary end-use technologies
 - Minimum of new infrastructure
 - Environmentally clean / Climate robust
 - Sustainable

Possible option include coal liquids, shale oil & biomass.

OPTIONS FOR FUTURE U.S. ENERGY - MY VIEW

Options	Likely Use (Years)	Innovations Needed	Other Issues
Coal Gasification to Liquid Fuels & Electricity	Hundred +	Modest	Water/Env. (Sequestration?)
Nuclear	Thousands	Breeders	Acceptance, \$\$, Waste
Renewables	"Forever"	Major	\$\$, Nature's Variability
Shale oil	Hundred +	Moderate	Water/Env.
Fusion	"Forever"	Major	Start Over?

Many variables / Issues **➡** Systems Studies **■**

WHAT ABOUT A BREAKTHROUGH IN ELECTRIC STORAGE?

- Electric vehicles become practical.
- Vehicle operation would be clean.
- Electric infrastructure in place, would need expansion.
- Pollution reduction then focused on generation.
- Safety would be greater than hydrogen.

Improvements needed ~ 10.

The Current Focus - Light Duty Vehicles

Current Best Hope:

PEM fuel cell with on-board hydrogen storage

<u>C</u>	urrent:	Needed:	Factor:
~\$10	00s/kW	< \$50/kW	~ 20 +
~100	0 hour life	~ 5000 hour life	~ 5
~30%	efficiency	~ 60% efficiency	~ 2
	Improv	ements needed ~ 10	00

Requires Exploratory Research / Invention

ACADEMIES ON EXISTING HYDROGEN PRODUCTION OPTIONS

Large = Central station Medium=Regional

Small = Filling station

OPTIONS	SIZES	ECONOMICS NOW
Natural gas	Small / Large	Best
Coal gasification	Large	Close Second
Coal electric*	Small/Medium/Large	Poor
Wind*	Small/Medium/Large	Fair
Photovoltaics*	Small/Medium/Large	Poor
Nuclear*	Large	Poor
Biomass	Small-Medium	Poor

ACADEMIES ON A H2 TRANSITION

- ➤ Tank trucks Distributed production Central station
- Gas reforming or electrolysis?
- Wind or solar energy "onsite"?
- Mature hydrogen economy difficult to imagine Let it evolve.
- Time allows for
 - Needed inventions & technology development for large scale hydrogen production & infrastructure
 - Market development / overcoming non-technical hurdles

Many variables Systems Studies

ACADEMIES HYDROGEN STUDY

Wide-ranging but Limited

Academies assumptions:

- + Cut imports
- + Facilitate CO2 reductions
- + Natural gas @ \$4.50 Mcf
- + Oil at \$30 / bbl

But

- + U.S. LNG is slowed natural gas supply / cost a problem
- + Sustained oil terrorism a possibility
- + Peaking of world oil production in 5-20 years possible.

Variables to be understood by Systems Studies

ACADEMIES RECOMMENDATIONS Systems Analysis of U.S. Energy Options

- DOE hydrogen systems analysis
 - Creation, transportation, storage, and end use
 - Short, medium, and long term
 - Context: All U.S. energy options
 - Systems analysis effort should be independent
- ➤ <u>All aspects</u> of the conceivable hydrogen <u>pathways must be</u> <u>modeled</u> to <u>understand the complex interactions</u> between components, system costs, & environmental impacts of components and the system as a whole

Independent / "Firewall" separated

Academies Recommendations **Systems Integration**

- Hydrogen program management is the <u>biggest</u> <u>challenge yet faced in DOE's civilian energy programs</u>
 - + Many paths to a possible hydrogen economy
 - + Many inter-related elements
- > Systems Integration (NASA/DOD) utilizes tools to
 - + Define & validate program requirements
 - + Identify and validate interfaces
 - + Identify <u>risks</u> & <u>mitigation approaches</u>
 - + Support informed decision-making
 - + Verify that results meet requirements
- Exploratory research must be treated & managed separately

Systems Integration is an arm of management; Not Independent

Concluding Thoughts

- Systems Analysis & Systems Integration are <u>both</u> <u>critical</u> to an effective DOE H2 R & D program.
 - + Systems Analysis Independent, separate
 - + Systems Integration An arm of management
- Hydrogen R & D challenges require change in DOE.

We wish you well.